Brain chaoticity and avalanche criticality are markers of anesthetic-induced unconsciousness

Charlotte Maschke*, Jordan O'Byrne*, George A. Mashour, Karim Jerbi, Stefanie Blain-Moraes *indicates equal contribution

@CharlottMaschke

Charlotte.Maschke@mail.mcgill.ca

INTRODUCTION

Criticality occurs when a system is poised between two dynamical regimes, such as stability and chaos

Electrophysiological (EEG) dynamics at criticality underpin:

- Healthy brain function 1,2
- The emergence of consciousness²

Our aim is to:

Investigate the effect of anesthesia on avalanche criticality and the edge of chaos in healthy adults.

DATASET A

METHODS

DATASET A

Healthy adults (n=9)

Data acquisition

High-density EEG

Data acquisition⁴

• 60 channel EEG

5min recording before

and during drug exposure

 5min recording during 5 states of an anesthetic protocol (see below)

DATASET B⁴

Healthy adults (n=15) undergoing exposure to:

- Propofol (n = 5)
- Xenon (n=5)
- Ketamine (n=5)

Avalanche Criticality

- Avalanche detection using threshold of 2 standard deviations and a bin size of 8 milliseconds
- Deviation from criticality coefficient (ratio of distribution of avalanche size, duration and size/duration)

Edge of chaos

- Peak detection using FOOOF package³ or lowpass filter ranging between 1 and 20 Hz
- Modified 01-Chaos test²

DATASET B

RESULTS

[F(4, 32) = 20.44, p < 0.001]

Increased brain chaoticity during anesthetic-induced unconsciousness

Stronger chaoticity during anestheticinduced unconsciousness, using isoflurane (p < 0.01), propofol (p < 0.05), and xenon (p < 0.05)

Chaoticity did not increase during exposure to Ketamine

- *P* < 0.05
- ** *P* < 0.01
- *** *P* < 0.001

CONCLUSION

Our results:

- 1) Support the theory that consciousness requires the brain to be poised near criticality.
- 2) Suggest that different types of criticality namely the edge of chaos and avalanche criticality - can be used as a marker of anesthetic-induced loss of consciousness.

Propofol and xenon, but not ketamine, induce a shift away from avalanche criticality

Only propofol (P < 0.01) and xenon (P < 0.05) resulted in a larger deviation from the criticality coefficient

Ketamine did not significantly alter DCC with respect to wakefulness

- [1] J. O'Byrne and K. Jerbi, "How critical is brain criticality?," Trends Neurosci., Sep. 2022.
- [2] D. Toker et al., "Consciousness is supported by near-critical slow cortical electrodynamics," Proc. Natl. Acad. Sci., vol. 119, no. 7, Feb. 2022.
- [3] T. Donoghue et al., "Parameterizing neural power spectra into periodic and aperiodic components," Nat. Neurosci., vol. 23, no. 12, pp. 1655–1665, Dec. 2020.

